ACGESSIBLE USB:

) Y DEVELOPING LOW-COST USB TOOLS

‘ KATE TEMKIN o MIKAELA SZEKELY
TEARDOWN 2019

ﬂi.

il
¥
E

S0, WHO ARE YOU?

_______ Katherine/Kate Temkin (@ktemkin):
‘e software lead, Great Scott Gadgets

e glitch witch & open-source-tool-builder
e educational (reverse) engineer
* lauded by the Daily Mail as a “cyber criminal”

Mikaela Szekely (@Qyriad):

e student, and yet master*

e got a bit too deep in some open-source USB stuff

e apparently better at cybercrime (not caught by the Daily Mail)

cyber criminals

by short circuiting a wire

most basic command level - its bootROM
overloading this they can then run any software or code that they wish

Hacking the USB World with FaceDancer
with Kate Temkin, Great Scott Gadgets, and Friends

M ce
4"5 THE WORLD A sAFER PLA Current iteration: TROOPERS

‘ \ March 18th - 19th, 2019; Heidelberg, Germany

Older accounts: welcome to the slightly-newer CTF system!
To resume using your account, you'll need to reset your password.

Getting Started & Materials

https://usbc.tf

e Approximate Schedule
e Setting up the hardware for the exercises
e Monitoring USB communications with USBMon

Monitoring USB Communications with USBMon

When working with USB devices, it's often helpful to have insight into the data that's being exchanged between the host and the device. There are several
methods to inspect USB communciations as they occur:

e A USB protocol analyzer is an expensive piece of equipment, but is the most flexible way of capturing USB communications.

e USBProxy-Nouveau provides a simple ability to analyze the USB data being proxied. Use of USBProxy will be covered in the training course.

e Software analyzers can be used on most operating systems. These analyzers are limited, and require control over the target-- but they're low cost and
convenient.

In this training course, we'll use the Linux usbmon analyzer to capture traffic between your host computer and a target USB Device. As a software-only solution,
usbmon is an excellent zero-cost starting point.

Setting up USBMon

USBMon performs its monitoring from inside of a Linux kernel module, which has full access to all USB packets processed by the system. Accordingly, we'll need to
load the module before we can use it:

sudo modprobe usbmon

Starting WireShark

The easiet wasy to view USBMon output is with Wireshark, a common suite used for protocol analysis. While it's not as full-featured as other USB analyzers, it
has the significant benefit of being free.

To run wireshark, run the following command:

wireshark

LET’S LOOK AT
WIRESHARK

1Pcs EZ-USB FX2LP CY7C68013A USB Core Board Development Boa
Logic Analyzer With 12C Serial SPI Interface

W 5.U (3 votes) 8 orders

Price: H543-51- piece

e US $3.16 /piece BTN (23n22m3ss

28 Get our app to see exclusive prices = | Bulk Price ~

Shipping: US $0.64 to United States via SunYou Econormic Air Mail ~
Estimated Delivery Time: 45 days)

Quantity: - 1 + | piece

Add to Cart O s
s [

SUPER-CHEAP USB ANALYSIS

wondition: ew

Quantity: | 1 | More than 10 available
\ / 22 sold / See feedback

Was: US$430 2

You save: $0.22 (5% off)

- v T
Add to cart

Add to watch list | =

e eBay Money Back Guarantee
We'll make sure you get this item or get your money back. Learn more

100% buyer satisfaction 22 sold Free shipg

Roll over image to zoom in

Comidox 1Set USB Logic Analyzer
Channel UART IIC SPI Debug for A

by Comidox
Wy {7 ~ 1 customer review

B b b

Price: $6,99 vprime

« This item is an inexpensive logic analyzer designed 1]
not an official Saleae product. This item is also supp|

* Sampling rate up to: 24 MHz , can be 24MHz. 16MH

100KHz, 50KHz, 25KHz.

The logic for each channel sampling rate of 24M/s,

ofoccasions.

A total of 8 digital channels, the voltage range is OV

considered low, above 1.5V is considered high.

* UART, SPI, IIC and other communication debugging,
automatically analyze UART, IIC, SPI and many othe

.

Specifications for this item
Brand Name Comida:
EAN 066108
Part Number CP317

UrPC 661083

9 You'll earn $0.04 in eBay Bucks. See conditions

Super-cheap FX2 “LA” boards are
really freaking cheap, and can
capture up to 24MHz via Sigrok.

That’s enough for LS/FS USB!

SIMPLE LS / FS ANALYSIS

+368060 s +368080 s +368100 s +368120 s +368140 ps +368160 uis
| \ | | | | | | | \ | | | \ | | | \ | | | |

DO
D1
[USBpacket) USB signalling: Bits CHIHRIHHRIRNG CHHRIHIHHNRIHRHRRH R REING
» USB signalling: Symbols G T L 1 T T T T
> USB packet: Packet fields | s 1 s JAJelc B s 1D 180106 00 01 100100 12 100
» USB packet: Packets

REQUEST DECODE WITH SIGROK? YEP
DOES IT GO FAR ENOUGH? ...NOT REALLY

THE “STATE OF THE ART” IN HS ANALYSIS

Extremely useful tools...

» Buy 5 for $1,100.00 each and save 9%

N

...with extremely inaccessible price tags.

WAII,

ISN'T USING USB?
SUPER COMPLICATED?

— engineers who can’t decode USB
because analyzers are too damned expensive

To validate that the vulnerability is present on a given device, one can try issuing an oversized request
and watch as the device responds. Pictured below is the response generated when sending a
oversized GET_STATUS control request with an ENDPOINT recipient to a T124:

» £3 [7 ORPHANED] [Periodic Timeout]
I w (7} Get Endpoint Status Endpoint 00 OUT
[» O SETUP txn 82 00 00 90 00 @00 EB @3
l » @ INtxn [2POLL) 00 00 00 90 00 90 00 Q0 E8 03 00 00 @4 DD 00 40 01 00 00 00 00 80 00 40..
| » @ INtxn 00 00 00 90 40 25 00 40 14 02 00 00 00 40 00 40 C1 22 10 0@ 95 ED A0 42.
[» @ INtxn F3 6E 4F E7 38 7F 6A 10 B7 91 7F AF 9D 5A 85 67 (@ A7 2A 25 6B 3D 10 5.
| » @ INtxn FC FF E8 5C 00 6D 28 25 5B 7B CF 73 @1 A4 22 30 79 FB BS 15 83 41 @2 5.
[» @ INtxn D3 86 BD 1A 30 40 40 15 EF FA BB FF 30 00 D3 Ot D3 F1 7C 18 FC @4 10 2D..
| » @ INxn ZA CADC 77 CF A© DD 1E CF 9D 7D OE 22 87 D7 99 54 E7 9E B6 93 00 E8 70..
[» & INtxn 57 94 64 87 B6 60 45 C0 D6 77 7D 69 46 66 B3 71 CO 88 B6 3D 3D 66 34 2B..
l » @ INtxn AD 94 CF F3 61 46 C8 19 FE 23 DF BZ 9A 40 00 00 BD 00 00 00 00 00 00 00..
l » @ INtxn FS 72 E1 E@ 75 96 D1 @8 F7 E2 89 8F EE 68 @7 4C EC BB F5 BB 86 48 @2 29..
[» @ INtxn 19 EC CD B8 04 S5F A4 1D BE 66 DF 34 73 6A 9C A3 (3 64 BA 32 CC 00 (0 9e..
| » @ INtxn CC 9@ CO 90 0C 00 00 20 (O 03 00 00 90 28 @0 40 DO 21 00 40 08 00 00 00..
| » @ INtxn 20 00 00 40 04 00 00 90 51 14 10 00 00 00 90 00 00 00 00 00 01 00 00 90..
| » @ INtxn 60 C1 13 D@ @3 B9 @0 AB BE AZ F@ 45 31 80 BE 98 23 EA AA 10 20 @9 1D..
| » @ INtxn FZ 57 71 72 E6 (O 56 15 B2 B0 61 7B 64 44 23 20 EE C4 09 3C 97 @2 00 52..
| » @ INtxn BD FA 80 37 6B 42 E3 E8 84 EF A4 B9 95 8F 68 OE 33 7E 1F 63 41 10 65 63..
| = & INtvn RR R7 RF R1 7R @€ 7?5 @3 F4 RR (7 7A@ ?R 7?5 QR 1@ SN NF 4R FN (A 14 4A F1

A compliant device should generate a two-byte response to a GET_STATUS request-- but the affected

Tegra responds with significantly longer response. This is a clear indication that we've run into the
vulnerability described above.

Search

"OpenVizsla" Open Source USB Protocol Analyzer

OpenVizsla is an open source, high-speed USB
sniffer that will help decode, debug and hack

proprietary USB hardware devices.

Created by

bushing

584 backers pledged $81,025 to help bring this project to life.

sysmocom

systems for mobile communic ations GmbH LOGIN

All departments v | Search W

HOME W CART: (EMPTY)

IMPORTANT NOTE: No orders will be handled from June 25, 2019 until July 7, 2019. Orders placed until 10:00am German local time (CEST) on June 24th will still
be handled+shipped before this period of absence.

OpenVizsla v3.2 USB Protocol Analyzer PCBA

This is fully assembled and tested OpenVizsla v3.2 USB protocol analyzer.

OpenVizsla is a bus sniffer/analyzer for USB. It allows you to passively monitor the communication between a
USB host and USB periheral. It supports USB low-speed, full-speed and high-speed.

The product is shipped as a bare printed circuit board assembly, without any enclosure.

MY

gy ®

For more information about OpenVizsla, see https://openvizsla.org/

PRICE
119.00 € (inc. VAT)

| Add To Cart

LOOK FOR SIMILAR ITEMS

Development Boards

OKAY, SHOW ME THE

SOFTWARE

ULPI_DATA

uz

USB3343 .

ULPI_DATAO &

ULPI_DATAL 5

ULPI_DATAZ 6

ULPI_DATAS 7

ULPI_DATAL 8

ULPI_DATA5 10

ULPI_DATAB 11

S S

ULPI_DATA7 12

ULPI_STP 24

ULPI_NXT

3
ULPI_DIR 1
ULPI_CLK 2

PHY_RESET 22

G

DATAOD
DATAL
DATAZ
DATA3
DATAL
DATAS
DATAB
DATA7Y

STP

NXT
DIR
CLKOUT

RESET

RBIAS

X0
REFCLK/XI

vDD18
VDD33

+5Y
VCC Microchip recommends <1R ESR
on VBUS capacitor.
TP? —1]> GND
25 —1> GND R? (7
P2 20k+5% 2.2uF
17 PHY_VBUS : — I TARGET_VBUS .
14 USB_D-— —
13 USB_D+
18
19 B.06k+1% —— 0
|_| e
- e
20 PHY_XO o Ted +/ SDOppm [DeND
21 PHY XI ?) 8.2pF
:|26MH2 | .
23 PHY_VDD18B > GND
? |l 8.2pF
15 o PHY_VDD33
'L
e 1 v 1“F
PHY_26MHZ_IN
<
GND GND

Datasheet requries <1R ESR
for VDD33,/VDD18 bypass.

din pin

qualifier pin Slice
m ux
16X
0 in
N5 o}—Io o 5 olgpio_
> > S

Fig 36. SGPIO block diagram

clk
qualifier

clk in

| Di

Slice
16x

gpio _oe

gpio_ out

Do

cl

dout

clk_out

intg

LPC43XX

Interrupt
logic - -
int Sh'ﬁ&
int 0_event (i)
| \V/ | -
int 1_event (i) It Capt&
int 2_event (i) int_input
int 3_event (i) P X
int matchiz
] DOUTo
Pin %
mux OEo
] DOUTs
Pin ?
mux OEss

GreatFET One (codename Azalea)

 Multi-tool for hardware hacking — including lots
of USB functionality.

 Centered around the LPC4330, so we have
access to that 204MHz SGPI0 fanciness.

 Super-fast USB stack, so we can saturate the
host’s USB bus with captured data.

o Build them yourselves! Design files at
https://github.com/greatfet-hardware

https://github.com/greatfet-hardware

+5Y
uz VCC Microchip recommends <iR ESR
. USB3343 . TR? _ _ _ on VBUS capacitor. _
_ULPI_DATAD 4 16 I o
DATAO VBAT P? — GND
_ULPI_DATAL 5 p7uy voDIO |2
\ULPLDATAZ 61 a2 GND RE——> GND R? —c?
_ULP|_DATA3 7 20k+5%
DATA3 i) P2 22 i) -
_ULP|_DATA4 B 17 PHY_VBUS TP 1 TARGET_VBUS - PPy e
DATA% VBUS . —1 . . VBUS
ULPLDATAS 10| 1745 D L& USB D- 2 |
_ULPI_DATAB 11| pa7ag D4 L3 USB D+ 3 1pe 9
N_ULPI_DATA7 12| pa7a7 T . b @7
. l l GND <—¢—5] Np & USB—MICRO—-B—SHIELDED
ULPLSTP 24 : .. R : .
ULPI_NXT 3 fl;(ﬁ' RBIAS [L2 8.0Bk+1% |] DGND (o (o o)
ULPLDIR 1] pip o PHY X0 o TP? freq +/— 500ppm & (e
ULPLELK 21 ¢ kout oL PHrx - h e | e
REFCLK/XI o 1" ‘ :
PHAY_RESET 22 ' P - T oMAz 1 | vBuUs
PHY. RESET 22 ? Y . GND
RESET vDDip (23 FHY.VDDIB o cz 1ezprF > 21p- 4
VD33 [L5_g PHY VDD33 3 oy =2
c? - 7 GNDQ b | cnD E USB—A—SHIELDED
1p? 1uF 1uF
PHY_26MHZ_IN =
~
GND GND

Datasheet requries <1R ESR
for VDD33,/VDD1B bypass.

RHODODENDRON . e

Optional Logic Analyzer Connections

RECIPE FOR A HIGH SPEED ANALYZER

Components:

o LPC43xx; or similar

« SDRAM for packet buffering*
« ULPI PHY

 SPI Flash

What this will get you:
o A SUper-cheap analyzer, especially if you omit the SDRAM
« an SDRAM-less design can still capture a lot of stuff

RECIPE FOR A HIGH SPEED ANALYZER

Components:

o LPC43xx; or similar

« SDRAM for packet buffering*
« ULPI PHY

 SPI Flash

What this won’t get you:
 WOrking analysis software
o Wait

commlt cC4TYbb/pbedold4id49ad4al/oCacoclbeededTopbddaa
Author: Mikaela Szekely <gyriad@gmail.com>
Date: Wed Jun 19 20:01:54 2019 -0600

usbproxy backend: always convert to "bytes’

Data passed to our FaceDancer filter varies;

know what we're working with.

commit 09889f5e75ae208e00d7664a4e468f17b3b93be?2
Author: Mikaela Szekely <gyriad@gmail.com>
Date: Wed Jun 19 14:36:58 2019 -0600

usbproxy backend: fix _get_device_address

commit 5ch5fdfa7bed7e828a99aabab84e8f46b1fdea2ab
Author: Kate J. Temkin <k@ktemkin.com>
Date: Tue Jun 18 01:07:14 2019 -0600

it's better to make sure we

implement most of the basic packet types and the USBProxy backend

Author: Kate J. Temkin <k@ktemkin.com>

commit 4c7cf111b4a875ea51463eedc@95a89@7z??})ﬁ%
Date: Mon Jun 17 06:44:30 2019 -0600“

initial commit: teensy start at our WIP analyzer solution

commlt cC4TYbb/pbedold4id49ad4al/oCacoclbeededTopbddaa
Author: Mikaela Szekely <gyriad@gmail.com>
Date: Wed Jun 19 20:01:54 2019 -0600

usbproxy backend: always convert to "bytes’

Data passed to our FaceDancer filter varies; it's better to make sure we
know what we're working with.

commit 09889f5e75ae208e00d7664a4e468f17b3b93be?2
Author: Mikaela Szekely <gyriad@gmail.com>
Date: Wed Jun 19 14:36:58 2019 -0600

usbproxy backend: fix _get_device_address

commit 5c5fdfa7bed7e828a99aaba58468f46b1fdéa 5
Author: Kate J. Temkin <k@ktemkin.com>\v
Date: Tue Jun 18 01:07:14 2019 -0600 .

implement most of the basic packet types, and the USBProxy backend
commit 4c7cf111b4a875ea51463eedc095a8907c007128
Author: Kate J. Temkin <k@ktemkin.com>

Date: Mon Jun 17 06:44:30 2019 -0600

initial commit: teensy start at our WIP analyzer solution

Backend Decoders Frontend

ViewSB Architecture

« Three component types run in their own processes; so
they can start and stop independently.

o All three components are designed to be easily
swappable using simple, modular python.

o All completely open-source, and contributor-friendly!

usb-tools / pyopenvizsla ©® Unwatch~ | 1 *hstar 2 YFork 0

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Security Insights Settings

standalone python host-side module to talk to OpenVizsla devices; based on LibOV Edit

Manage topics

D 7 commits ¥ 1 branch © 0 releases 22 1 contributor sfs BSD-2-Clause
N §

Branch: master ~ New pull request Create new file = Upload files = Find File Clone or download ~

. ktemkin python: device: fix type confusion re: firmware package names Latest commit 4360e67 3 days ago
i} libov initial commit: basic implementation of python-package'd OV 5 days ago
im openvizsla python: device: fix type confusion re: firmware package names 3 days ago
) .gitignore initial commit: basic implementation of python-package'd OV 5 days ago
= LICENSE initial commit: basic implementation of python-package'd OV 5 days ago
E) MANIFEST.in initial commit: basic implementation of python-package'd OV 5 days ago
=) setup.py cleanup: split the libOV monolith and clean up our structure 4 days ago

Help people interested in this repository understand your project by adding a README.

OKAY, SHOW ME THE

SOFTWARE

Decoders Frontend

def handle_usb_packet(self, timestamp, raw_packet, flags):

" Called whenever the OpenVizsla device detects a new USB packet.

For now, 1gnore any populated USB packets as noise.
1f not len(raw_packet):
return

TODO: convert flags to status?
packet = USBPacket.from_raw_packet(raw_packet, timestamp=timestamp)

Assume the packet isn't one we're suppressing, emit 1t to our stack.
if not self._should_be_suppressed(packet):
self._emit_packet(packet)

[capture-cli-ov.py]

Backend Frontend

class SetAddressRequest(StandardControlRequest):
REQUEST_NUMBER = 5
REQUEST_NAME = "SET ADDESS"
FIELDS = { "new_addess" }

def validate(self):
self.new_address = self.value

def summarize(self):
return "requesting device use address {}".format(self.new_address)

[capture-cli.py]

Backena Decoders

class CLIFrontend(ViewSBFrontend):
""" Simplest possible frontend: print our packets.

def __init__(self):
""" Creates a new CLI display frontend.
pass

def handle_incoming_packet(self, packet):
""" Render any incoming packets to our UI. """
just print; no fancy frontend

print(repr(packet))

[capture-tui.py]

[oh, and we support usbmon]

® Watch~ 10 % Star 33 ¥ Fork 12

enjoy-digital / daisho

joy Digi 0 Wiki Security Insights
EreaD9iial Enloy Dlgltal

> @enjoy_digital
Just finished porting Daisho's open source
USB3 core to Xilinx FPGAs)

2 contributors

Create new file Upload files Find File

USB3.0 packets (AT
di

Bus 006 Device 027: ID 1d50:605a OpenMoko, Inc.

florent@localhost:~

Beagle USB 5000 V2 Bus 006 Device 601: ID 1d6b:6003 Linux Foundation 3.0 root hub
b

Bus 005 Device 002: ID 2109:3431 VIA Labs, Inc. Hu
Bus 005 Device 801: ID 1d6b:0002 Linux Foundation 2. root hub
Bus 001 Device 002: ID 8087:8008 Intel Corp.
Bus 001 Device 801: ID 1d6b:062 Linux Foundation 2.6 root hub
Bus 004 Device 001: ID 1d6b:0803 Linux Foundation 3.6 root hub
Bus 003 Device 003: ID 046d:c@5a Logitech, Inc. M98/M100 Optical Mol
Bus 003 Device 882: ID 85e3:0745 Genesys Logic, Inc. Logilink CREGL:
l[!nfxi 803 Device 081: ID 1d6b:8062 Linux Foundation 2.6 root hub

g orent@localhost ~
Bus 062 Device 862:
Bus 862 Device 601:
Bus 006 Device 627
Bus 886 Device 601: H i
Bus 685 Device 602: s, Inc. Hul ¥
B:: 805 Device 601: 2 Linux Foundation 2.8 root hub UC‘ n
Bus 001 Device 02: [8 Intel Corp.
Bus 061 Device 801: ID 1d6b:@882 Linux Foundation 2.8 root hub
Bus 004 Device 801: ID 1d6b:8063 Linux Foundation 3.8 root hub
Bus 983 Device 803: ID 846d:c85a Logitech, Inc. MO8/M160 Optical Mo
Bus 883 Device 862: ID 85e3:8745 Genesys Logic, Inc. Logilink CROEL
Bus 083 Device 801: ID 1d6b:8862 Linux Foundation 2.8 root hub

[florent@localhost ~]$ Lsusbf]

Latest commit 452709c on Feb 23, 2018

iy Jus, able to see rx da
Foundation 2.8 root hub

Foundation 3.8 root hub

add precision for kc705

7:43 AM - 3 Apr 2017

migen

load.py

nexys_video.py

README.md

Test of the USB3 IP Core from Daisho on a Xilinx devicd

In this repository we are testing the USB3 IP Core from

add kc705 base design

replace litex.gen imports with migen

« USB2 / ULPI working :) (vendor agnostic)

Luke Valenty
@TinyFPGA

V

Looks like the Daisho USB3 core easily fits in
the ECP5 85K part. It uses about 10% of the
logic resources. It also meets timing with
plenty of margin. These are all good signs.
Next | need to wrap up the 5G SERDES in a

PIPE interface.

BONUS
QUESTIONS ¢

	Slide 1
	SO, WHO are YOU?_clipboard0
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

