
OPENING BLACK BOX SYSTEMS

TROOPERS18
WITH GREATFET+FD

KATE TEMKIN & DOMINIC SPILL



WHO WE ARE

Kate Temkin (@ktemkin):
• slayer of Tegras, destroyer of worlds
• glitch witch & tool-builder
• educational (reverse) engineer

Dominic Spill (@dominicgs):
• cannot stop being extraordinary, 

on penalty of deportation
• shark whisperer & demo dancer



MANY THANKS TO
• Travis Goodspeed (@travisgoodspeed)
• Sergey Bratus (@sergeybratus)
• Michael Ossmann (@michaelossmann)

PEOPLE WHO GIVE US MONEY
• Great Scott Gadgets (@gsglabs)



Why target USB?
USB is everywhere.



WHY USB?
The capability to monitor, MITM, & emulate USB devices enables:

● Understanding the behaviors of USB and driver stacks
● Building tools that work with existing hardware / software
● Building implants and tools for playing NSA.
● One to get a foot in the door for understanding black box systems.



WHY PROXY?
All too often-- as with black box systems-- we don’t control the host software stack:

● Game consoles [e.g. the Nintendo Switch]
● In car entertainment [e.g. Tesla consoles]
● Point of sale
● Televisions

● … pretty much any embedded device that can act as a USB host!



USBPROXY NOUVEAU
USBProxy is a tool that allows us to proxy the connection between a USB host and 
device. While proxying a connection we can:

● Log USB packets (cheap protocol analysis)
● Modify data being sent to or received from a device
● Inject new packets into the connection, or absorb packets 
● capture side-channel information and precisely time glitching attacks

Original version was based on a BeagleBone Black in C++. 
We’ve rewritten it to take advantage of FaceDancer’s more granular control.



[let’s monitor some USB]

https://github.com/ktemkin/Facedancer/blob/master/facedancer-usbproxy.py



USB CLASSES
In addition to specifying the standard protocol used for enumeration/configuration, 
the specs also specify protocols for standard device classes, allowing e.g. 
operating systems to provide standardized drivers.

● Human Interface Device (keyboards, mice, datagloves; the usual)
● Serial (e.g. CDC-ACM)
● Mass storage (UMS bulk only / UAS)
● Audio / Video
● Midi
● Scanners
● Networking
● etc.



[let’s slack off]

https://github.com/ktemkin/Facedancer/blob/master/usbproxy-switch-invertx.py



EXPLORATORY RE
There are many USB hosts and devices for which firmware isn’t easily available--
but we don’t always need firmware to do interesting things to a system.

● Can we discover behaviour?
● Find firmware functions?
● What about identifying hosts?



EXPLORING FUNCTIONALITY
By monitoring and modifying USB packets we can discover functionality of a host 
system

● Does it take firmware updates via USB?
○ What filename is it looking for?
○ Does it read that file multiple times?

● How does the host enumerate the device?
○ Order and length of requests
○ Timing
○ Windows Compatibility ID
○ umap2 already does this, let’s port it to new FaceDancer



EXPLORING FUNCTIONALITY
By monitoring and modifying USB packets we can discover functionality of a host 
system

● Does it take firmware updates via USB?
○ What filename is it looking for?
○ Does it read that file multiple times?

● How does the host enumerate the device?
○ Order and length of requests
○ Timing
○ Windows Compatibility ID
○ umap2 already does this; let’s port it to new FaceDancer

● What are the device’s access patterns?



[let’s run a simulated firmware update]



UMS DOUBLE FETCH
Of course, nothing says our emulated devices have to behave nicely.

Example: most systems assume that disk contents don’t change on their own
Reality: in practice, they totally can

Example firmware update sequence:

● USB host reads firmware off flash drive, computing a checksum as it does
● USB host verifies the checksum, which passes
● USB host rereads the firmware and flashes it to ROM



[let’s fetch... twice]

https://github.com/ktemkin/Facedancer/blob/master/facedancer-ums-doublefetch.py



EXPLORING FUNCTIONALITY
By monitoring and modifying USB packets we can discover functionality of a host 
system

● Does it take firmware updates via USB?
○ What filename is it looking for?
○ Does it read that file multiple times?

● How does the host enumerate the device?
○ Order and length of requests
○ Timing
○ Windows Compatibility ID
○ umap2 already does this, let’s port it to new FaceDancer



[let’s talk about firmware filenames]



Synchronization 
Features

Stimulus
Generation Triggering Features

GlitchKit

Event Routing

Clock Management

USB Host

eMMC Device
(not yet complete)

USB Device

Simple Event Triggers

UART Triggers

Trigger Output



GLITCHKIT LIBRARY
gf = GreatFET()
gf.switch_to_external_clock()
gf.glitchkit.provide_target_clock(VBUS_ENABLED);

gf.glitchkit.simple.watch_for_event(
1, [('EDGE_RISING', 'J1_P7')]) 

gf.glitchkit.use_events_for_synchronization(COUNT_REACHED)

gf.glitchkit.trigger_on_events(HOST_SETUP_TRANSFER_QUEUED)
gf.glitchkit.usb.capture_control_in(request=GET_DESCRIPTOR, 

value=GET_DEVICE_DESCRIPTOR, length=18)



THANKS FOR LISTENING!
QUESTIONS?

JOIN US: 
https://github.com/greatscottgadgets/greatfet
https://github.com/ktemkin/Facedancer
https://github.com/glitchkit


